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Abstract

Internet protocols permit a single machine to mas-
querade as many, allowing an adversary to appear to
control more nodes than it actually does. The pos-
sibility of such Sybil attacks has been taken to mean
that distributed algorithms that tolerate only a fixed
fraction of faulty nodes are not useful in peer-to-
peer systems unless identities can be verified exter-
nally. The present work argues against this assump-
tion, by presenting practical algorithms for the dis-
tributed computing problem of Byzantine agreement
that defend against Sybil attacks by using moder-
ately hard puzzles as a pricing scheme for identities.
Though our algorithms do not prevent Sybil attacks
entirely, they solve Byzantine agreement (and some
useful variants) when the limited fraction of nodes
that can fail is replaced by a limited fraction of the
total computational power. These results suggest that
Byzantine agreement and similar tools from the dis-
tributed computing literature are likely to help solve
the problem of adversarial behavior by components
of peer-to-peer systems.

1 Introduction

Peer-to-peer systems that allow arbitrary machines to
connect to them are known to be vulnerable to pseu-
dospoofing or Sybil attacks, first described in a pa-
per by Douceur [6], in which Byzantine nodes adopt
multiple identities to break fault-tolerant distributed

�
Email: aspnes@cs.yale.edu. Supported by NSF

grants CCR-0098078 and CCR-0305258.�
Email: collin.jackson@yale.edu.�
Email: arvind@cs.yale.edu. Supported by NSF

grants CCR-9985304, ANI-0207399, and CCR-0209122.

algorithms that require that the adversary control no
more than a fixed fraction of the nodes. Douceur ar-
gues in particular that no practical system can pre-
vent such attacks, even using techniques such as pric-
ing via processing [8], without either using external
validation (e.g., by relying on the scarceness of DNS
domain names or Social Security numbers), or by
making assumptions about the system that are un-
likely to hold in practice. While he describes the pos-
sibility of using a system similar to Hashcash [2] for
validating identities under certain very strong crypto-
graphic assumptions, he suggests that this approach
can only work if (a) all the nodes in the system have
nearly identical resource constraints; (b) all identi-
ties are validated simultaneously by all participants;
and (c) for “indirect validations,” in which an iden-
tity is validated by being vouched for by some num-
ber of other validated identities, the number of such
witnesses must exceed the maximum number of bad
identities. This result has been abbreviated by many
subsequent researchers [7, 10, 18–20] as a blanket
statement that preventing Sybil attacks without ex-
ternal validation is impossible.

We argue that this impossibility result is much
more narrow than it appears, because it gives the at-
tacking nodes a significant advantage in that it re-
stricts legitimate nodes to one identity each. By re-
moving this restriction we can resist the Sybil attack
for the central problem of Byzantine agreement [12],
in which all non-faulty participants must agree on
some single decision value despite the interference
of faulty nodes. Though Byzantine agreement can be
solved trivially in the model used in [6] (because that
model provides synchronous reliable broadcast) we
show that even in a standard synchronous message-
passing model (without reliable broadcast) it can still
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be solved if we use digital signatures to enforce dis-
tinguishability between alleged identities. Many tra-
ditional distributed computing problems are solvable
with Byzantine agreement protocols, so our algo-
rithms can be used to accomplish a wide variety of
objectives.

Our two algorithms in in Section 3 and Section 4
use moderately hard puzzles [2, 11, 17] as a demon-
stration of computing power. They are designed a
preamble for any standard Byzantine agreement al-
gorithm, and they create a virtual network where
identities are priced by computing power so that con-
sensus algorithms can safely run. This technique
solves Byzantine agreement if the adversary controls
less than a third of the total computational power in
the system, and in the specific case where all ma-
chines have equal computational power, it achieves
consensus with multiple identities per node under ex-
actly the same conditions as it is solvable with single
identities. It follows that for any problem that can be
reduced to Byzantine agreement, our ability to solve
that problem is not affected by allowing Byzantine
nodes to masquerade as multiple nodes.

Note that standard Byzantine agreement places
few constraints on the common decision value. In
particular, the adversary can determine which value
is decided on. For peer-to-peer applications, it
is more natural to demand strong consensus [14],
where the decision value must be the input of some
good node, or � -differential consensus [9], where
the decision value must be nearly a plurality value
among the good nodes. The virtual network cre-
ated by our algorithms can be used as a preamble
for strong and � -differential consensus algorithms as
well.

2 Model

We assume a synchronous point-to-point network
with reliable messages, where machines have some
source of nondeterminism for the generation of ran-
dom numbers. Each machine may have multiple ad-
dresses, and there is no mechanism for distinguishing
multiple machines with one address each from a sin-
gle machine with many addresses. This assumption
is justified in practice not only because IP addresses
are easy to spoof, but because many machines now
sit behind firewalls using Network Address Transla-

Figure 1: Byzantine agreement is not possible amongst
nodes, but becomes feasible with priced identities.

tion, which presents many machines on the inside of
the firewall as a single machine to the outside.

We can imagine representing a node as an IP ad-
dress and a port number, with the assumption (nec-
essary to build any protocol at all) that the adversary
cannot corrupt messages or arrange for messages di-
rected at a particular address to be delivered else-
where. To prevent spoofing of outgoing messages,
we further imagine that each node chooses a public
key that it appends to each outgoing message from
that address, along with a digital signature for the
message using the corresponding private key. We do
not assume the presence of a public key infrastruc-
ture to guarantee that these public keys are not them-
selves spoofed, and in general a node can generate as
many public keys as it wants; but recipients can treat
messages arriving with different public keys as com-
ing from different nodes, so the problem of pruning
out extraneous public keys reduces to the problem of
pruning out extraneous nodes.

We assume that each node has some limited
amount of computing power, defined as the number
of puzzle solutions that the node can generate in a
single round, for any of the puzzles that are defined in
Sections 3 and 4. There are � physical nodes in the
network, ��� of which are good (non-faulty) and ���
of which are evil (Byzantine, i.e., controlled by the
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adversary). Let � be the total computing power of
all the nodes in the physical network. The computing
power � � of the good nodes is fixed but not necessar-
ily uniform. The collective computing power � � of
the adversary can be dynamically allocated among
the adversary nodes. Our goal is to devise a pric-
ing scheme for assigning identities to nodes, with the
property that the proportion of identities belonging to
good nodes at the end of the protocol is close to their
share of the total computational power (as illustrated
by Figure 1).

A final assumption is that the set of nodes par-
ticipating in the protocol is known to each node at
the start of the validation protocol, which means that
we can order the nodes and assign them an index
based on their IP address, port number, and digital
signature. This assumption is necessary to allow the
nodes to communicate at all given only a point-to-
point message-passing network, but it does raise the
question of how this agreed-upon set of nodes is de-
termined and distributed to the nodes. We do not ad-
dress this question at present, assuming simply that
some centralized sign-up mechanism exists, but note
that it does provide interesting possibilities for future
work.

3 Democracy

The Democracy algorithm takes three rounds to val-
idate identities. In the first round, each node sends
an individualized sub-puzzle to every other node. In
the second round, each node determines its puzzle
from the sub-puzzles, computes as many solutions
as possible, and sends the puzzle and its solutions
back to every node in the system. In the final round,
each node verifies the received solutions and assigns
the correct number of identities to that node, hand-
ing control of subsequent protocol interactions over
to its own identities.

Since the adversary can only help itself by send-
ing correct solutions when such a solution is avail-
able, we can safely assume that it sends each of its
solutions to every good node. Let � be the expected
amount of computational power required to acquire
an identity. If the sub-puzzles cannot be cheated
as discussed below, the expected number of identi-
ties assigned to adversarial nodes, � � , is � ����� and
the expected number of identities assigned to legit-

imate nodes, � � , is � � ��� . If � ��� � � ��� , then
� � � � �	��� (allowing unauthenticated consensus),
and if � � � � � , then � � � � � (allowing � -differential
consensus).

Democracy only works if moderately hard puzzles
can be constructed from a number of sub-puzzles,
many of which are chosen by the adversarial nodes.
We present a puzzle approach that provides the de-
sired guarantees:


 Parameters: A one-way hash function � . Its
domain is bit-strings of length �
����� and the
range includes strings of lengths greater than � ,
where ������������� .


 Input: The puzzle string � is of length ��� and
contains the � bits received from each node, or-
dered by node index.


 Puzzle: Compute as many ��� as possible such
that the most significant bits of each �����! "�#�%$
are ��& .


 Output: Send � and all the ��� to every node.


 Verification: Check the appropriate portion of
� for the sent bits. Check that the most signifi-
cant bits of each �����' "�(�)$ are � & .

Using this puzzle scheme, the Democracy algo-
rithm sends *+� � � ��$ messages, ignoring messages
between adversarial nodes. Sending the string � re-
quires *+� �
�,$ bits, and sending the solutions re-
quires *+�)�-� max $/.0*+�1�+� max $ bits, where � max is
the number of puzzles the most powerful node in the
system can solve.

The hash function should be a cryptographically
strong function such as MD5 or SHA1. We as-
sume that no attack on the hash function can produce
a puzzle solution faster than trying random inputs,
even when the adversary can fix some of the input
bits. Though this is a common assumption in the lit-
erature [1,3,4,15], it should be noted that it is a very
strong property, and while it holds for random func-
tions, it is not known whether standard cryptographic
hash functions provide such security.1 The value of

1This fact was observed by Douceur [6], who proposed a
similar puzzle problem without constraining the order of com-
bining different identities’ contributions to the puzzle. Douceur
observed that partial-preimage resistance was a minimum re-
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� should be chosen to be small enough so that a node
with computing power � can compute one � � on aver-
age during the time allotted for puzzle solving. Since
the expected number of solutions (and hence, the ver-
ification time) is proportional to ��� & , � should be
large enough that every node will have time to verify
every identity during the verification round.

We note that this way of combining the sub-
puzzles into one puzzle for Democracy has the fol-
lowing desirable properties:


 It is resistant to tampering. The adversary can-
not discredit other legitimate nodes by supply-
ing impossible or confusing sub-puzzles. Any
string of bits is a valid sub-puzzle, and if the
correct number of bits is not received, 0 can be
used as a placeholder.


 It is resistant to precomputation. An adversary
would need to create a table of size � � to store
the solutions for every string of input bits. Fur-
thermore, this table would only succeed in fool-
ing one node, so a table of size � � � � would be
needed to convince all good nodes.2


 It is resistant to collusion. Although the adver-
sary can choose many of the sub-puzzles, it does
not control all of them. If the output of MD5
or SHA1 is computationally indistinguishable
from random, the adversary’s ability to control
some of the input bits will not make finding col-
lisions easier.


 It is scalable. If one computer can find � colli-
sions in one round on average, we would expect
two such computers running side-by-side and
searching different parts of the function space
to find ��� collisions on average. Furthermore,
the time to compute MD5 or SHA1 fingerprints

quirement for such a puzzle, but because we control only part of
the output the full requirements are even stronger. See Menezes
et al. [13] Remark 9.22 and Section 9.5.2 for a definition of
partial-preimage resistance and a discussion of the difficulties
of applying cryptographic hash functions in applications of this
sort.

2To make the precomputation table size � ���
	 , one might re-
quire nodes to send the digitally signed versions of their input
bits. However, this approach makes verification more expensive
and it destroys the tamper-resistant property, because Byzantine
nodes can discredit good nodes by not sending any sub-puzzles.
The bits spent providing the digitally signed version of � would
be better spent making it larger.

does not depend significantly on the input bits,
even if the puzzles are different, so we could
hand the computers different puzzles and the
expected number of collisions would still be
twice as many.

4 Monarchy

The Democracy algorithm in Section 3 prices iden-
tities in a constant number of rounds, but at the cost
of making strong assumptions about the underlying
puzzle. We provided a puzzle approach, but we note
that the running time to compute solutions for the
posed puzzles are modeled by a probabilistic cost
function. In this section, we propose a different algo-
rithm that provides more flexibility in what puzzles
can be used, thereby allowing us to employ puzzles
that have fixed running costs, such as the time-lock
puzzle of [17].

In the Monarchy algorithm, each node takes its
turn sending puzzles and receiving solutions. If � is
the round number, the “king” of the round is the node
with index � . The king sends out an individualized
puzzle to each node at the end of the round before
he is king. (We include a round 
�� so that the king
with index 0 can send his puzzles.) Each node finds
as many solutions to the puzzle as possible during
the king’s round and sends the solutions to the king
at the end of that round.

This process continues up until round � , when
the nodes stop solving problems and spend the round
verifying the solutions sent to them. If node ��� sends
��� solutions to ��� , then ��� assigns ��� ��� identities
to ��� in the virtual network. Each node broadcasts
how many identities it thinks each other node has,
and then hands over control of subsequent protocol
interactions to its identities.

We treat the identities as autonomous agents
hosted by the nodes. Identity ����� � , the ��� � identity
hosted by node ��� , inherits its initial notions of trust
from its host node: ����� � begins by trusting ��� �  if
��� assigns at least ! identities to ��� . It then in-
terprets the identity assignments broadcast by other
host nodes as “accusations.” If ��" � # is trusted by ����� �
and � " attributes less than ! identities to ��� , then
�$" � # is accusing ��� �  to be illegitimate. If � ��� � re-
ceives more than � ����� such accusations regarding
��� �  ’s legitimacy, then ����� � stops trusting ��� �  . As-
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Table 1: A comparison of Monarchy and Democracy
Rounds Messages Message Size Fault Tolerance Fault Tolerance

(unauthenticated) ( � -consensus)

Monarchy *+� ��$ *+� � � ��$ *+�1�+� max � �������(� ��$ ��� $ � � ��� � � ���
Democracy * � � $ * � � � ��$ * �1�+� max � � � $ � � ��� � �

suming that the legitimate identities begin by trust-
ing other legitimate identities, the adversaries can-
not confuse a legitimate identity ����� � into losing trust
in another legitimate identity ��� �  unless it can con-
vince ��� to assign more than � � ��� identities to the
adversarial nodes. However, if the puzzles were
well-designed, the adversarial nodes will not be able
to find more than � � solutions, and thus cannot ob-
tain more than � � ��� identities from ��� .

To remain in the virtual network, each adversarial
identity must be trusted by at least � � 
�� � ��� legiti-
mate identities, so that no more than � � ��� legitimate
identities will accuse it by not listing it as trusted.
Since good nodes follow the protocol and earn their
identities honestly, we expect � � . � � ��� . Each
of these � � ��� legitimate identities can be fooled by
at most � � ��� adversarial identities. Hence, at most
�1� � ��� $��1� � ��� $ � �1� � ��� 
�� � ��� $ adversarial identities
can survive accusations. It follows that if � � �
� �	��� , then � � � � �	��� (allowing unauthenticated
consensus), and if � � � � �	��� , then � � � � � (al-
lowing � -differential consensus).

It may appear as though increased fault tolerance
can be achieved with further rounds of accusations,
but this is not the case. The adversary can only
hurt itself by accusing other adversarial nodes, so
we can safely assume the adversary never accuses
itself. Furthermore, good nodes pay for their iden-
tities through honest work, so good identities will
generally not accuse other good identities. If enough
good identities accuse an enemy identity ��� �  to con-
vince any one good identity that previously trusted
��� �  , then all good identities will be similarly con-
vinced. Otherwise, the same number of accusations
against ��� �  exist after the accusation round, so fur-
ther rounds of accusations would be uneventful.

There are *+� � � ��$ messages total, ignoring mes-
sages between adversarial nodes. If the problems
and solutions each require * �1�,$ bits to communi-
cate, where � is a security parameter, the message
size during each king’s round will be * �1�,� max $ ,
where � max is the computational power of the most

powerful node. The messages in the final round re-
quire 	�
��#� �
����� � � � � $�� ������� � ��$ $ bits on average as
a host node can either send the number of identi-
ties assigned to each node or it can send the node
associated with each identity. We note that the ad-
versary has control over � whereas no legitimate
node would claim � exceeds � ��� , so the system can
predictably bound message size to ������� � ��$ ��� by
choosing to communicate the node associated with
each identity.

5 Conclusion

We have described two algorithms for limiting the
effect of multiple identities in a peer-to-peer system.
These algorithms have complementary strengths; the
Democracy algorithm of Section 3 is faster and toler-
ates more faults than the Monarchy algorithm of Sec-
tion 4, but at the cost of larger messages (as summa-
rized by Table 1) and stronger requirements for the
embedded puzzle problem.

By using the Democracy or Monarchy algorithms
as a preamble, we can solve Byzantine agreement
despite the efforts of Byzantine nodes with mul-
tiple identities. Our algorithms are also relevant
in a number of settings such as self-policing peer-
to-peer systems that detect Byzantine agents and
freeloaders [18, 19], distributed trust management
systems [7], toolkits for building high-integrity ser-
vices [16], and Byzantine fault-tolerant distributed
file systems [5].

An obvious question is whether some hybrid algo-
rithm could combine the positive features of both al-
gorithms. Other questions are whether the complex-
ity could be further reduced with other cryptographic
primitives, how to bootstrap the initial assumption
that all claimed identities are known, what lower
bounds can be proved to show the potential scope of
this approach, and what practical issues arise if these
techniques are implemented. We plan to address all
of these questions in future work.
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